A Vector-valued Random Ergodic Theorem

نویسنده

  • ANATOLE BECK
چکیده

2. Theorem. Let £ be a reflexive B-space and let (S, 2, m) be a a-finite measure space. Let there be defined on S a strongly measurable function Ts with values in the B-space B(H) of bounded linear operators on H. Suppose that || 7\|| ^=1 for all sES. Let h be a measure-preserving transformation (m.p.t.) in (S, 2, m). Then for each XELi(S, £) there is an XELi(S, X) such that limn<„ «_1E"=i T*Thu) • • ' 7V~'(s) ■(X(hi(s))) = X(s) strongly in X a.e.jn S,2 and X(s) = T,(X(h(s))) a.e. in S. Moreover, if m(S) < oc , then X is also the limit in the mean of order 1.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Laws of large numbers and Birkhoff’s ergodic theorem

In preparation for the next post on the central limit theorem, it's worth recalling the fundamental results on convergence of the average of a sequence of random variables: the law of large numbers (both weak and strong), and its strengthening to non-IID sequences, the Birkhoff ergodic theorem. 1 Convergence of random variables First we need to recall the different ways in which a sequence of r...

متن کامل

Finer filtration for matrix-valued cocycle based on Oseledec's multiplicative ergodic theorem

We consider a measurable matrix-valued cocycle A : Z+ × X → Rd×d, driven by a measurepreserving transformation T of a probability space (X,F , μ), with the integrability condition log ‖A(1, ·)‖ ∈ L1(μ). We show that for μ-a.e. x ∈ X, if limn→∞ 1 n log ‖A(n, x)v‖ = 0 for all v ∈ Rd \ {0}, then the trajectory {A(n, x)v}n=0 is far away from 0 (i.e. lim supn→∞ ‖A(n, x)v‖ > 0) and there is some nonz...

متن کامل

Individual ergodic theorem for intuitionistic fuzzy observables using intuitionistic fuzzy state

The classical ergodic theory hasbeen built on σ-algebras. Later the Individual ergodictheorem was studied on more general structures like MV-algebrasand quantum structures. The aim of this paper is to formulate theIndividual ergodic theorem for intuitionistic fuzzy observablesusing  m-almost everywhere convergence, where  m...

متن کامل

Discrete random electromagnetic Laplacians

We consider discrete random magnetic Laplacians in the plane and discrete random electromagnetic Laplacians in higher dimensions. The existence of these objects relies on a theorem of Feldman-Moore which was generalized by Lind to the nonabelian case. For example, it allows to realize ergodic Schrr odinger operators with stationary independent magnetic elds on discrete two dimensional lattices ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010